IMPORTANT: This syllabus form should be submitted to OAA (<u>gsbs_academic_affairs@uth.tmc.edu</u>) a week before the start of each semester.

NOTE to STUDENTS: If you need any accommodations related to attending/enrolling in this course, please contact one of the Graduate School's 504 Coordinators, Cheryl Spitzenberger or Natalie Sirisaengtaksin. We ask that you notify GSBS in advance (preferably at least 3 days before the start of the semester) so we can make appropriate arrangements.

Term and Year: Summer 2024	Program Required Course: Yes
Course Number and Course Title: GS02 1223: Diagnostic Medical Physics II Credit Hours: 1 Meeting Location: UT MDACC Main Building Building/Room#: FCT 14.5059 (Room 4)	Approval Code: Yes (If yes, the Course Director or the Course Designee will provide the approval code)
	Audit Permitted: Yes
	Classes Begin: May 20, 2024
	Final Exam Week: August 12-15, 2024

Class Meeting Schedule

Day	Time	
Tuesdays and Thursdays	10:00-11:30 a.m.	
Course Director:	Instructor/s	
Name and Degree: R. Jason Stafford, PhD	1. R. Jason Stafford. PhD	
Title: Professor	Institution: MDACC	
Department: Imaging Physics	Email Address : JStafford@mdanderson.org	
Institution: MDACC	2. Richard Bouchard, PhD	
Email Address: <u>JStafford@mdanderson.org</u>	Institution: MDACC	
Contact Number: 713-745-5082	Email Address : RRBouchard@mdanderson.org	
Co-Course Director:	3. Chris Walker PhD	
Name and Degree:	Institution: MDACC	
Title: Associate Professor	Email Address: <u>CMwalker@mdanderson.org</u>	
Department: Imaging Physics	4. Bryan Taylor, PhD	
Institution: MDACC	Institution: MDACC	
Email Address: <u>RRBouchard@mdanderson.org</u>	Email Address <u>BTaylor9@mdanderson.org</u>	
Contact Number: 713-745-0626		

NOTE: Office hours are available by request. Please email me to arrange a time to meet.	5. Joshua Yung, PhD Institution: MDACC Email Address: <u>JYung@mdanderson.org</u>
--	--

Course Description:

This course provides graduate students with a foundation in the fundamental physics, principles of image formation, and reconstruction, instrumentation, safety, and quality assurance of ultrasound and magnetic resonance imaging.

Textbook/Supplemental Reading Materials

- Jerrold T. Bushberg, J. Anthony Seibert, Edwin M. Leidhodt, Jr, and John M. Boone, The Essential Physics of Medical Imaging, Third Edition. ~\$205
- Douglas Christensen, Ultrasonic Bioinstrumentation, John Wiley & Sons, 1991, ISBN 978-0471604969. ~\$240

Course Objective/s:

Upon successful completion of this course, students will

Specific Learning Objectives:

- 1. Outlline and review fundamental physics underlying Ultrasound & MRI.
- 2. Describe and explailn key principles of Ultrasound & MR image formation and contrast.
- 3. Name common Ultrasound & MR acquisition techniques and explain underlying physical principles of opeation, advantages, and disadvantages.
- 4. Identitfy common Ultrasound & MRI artifacts and quality control methodologies.
- 5. Recognize key safety risks in Ultrasound & MRI and explain underlying physical principles.

Student Responsibilities and Expectations:

Students enrolled in this course will be expected to perform the following activities each week:

- 1. Read, process, and review (student) material from assigned reading in textbooks or provided literature.
- 2. Complete assigned homework and participate in discussions of assignments in class.
- 3. Prepare for and take course quizzes based on course lectures/ readings.
- 4. Participate in and contribute to course discussions during lecture, review sessions
- 5. Participate in and complete assigned work in laboratory sessions
- 6. Prepare for and take a final examination based on lecture and some reading material.

Students are expected to complete all assigned reading material prior to class. While you may work and discuss all course materials and assignments in groups, all assignments must be your own. Plagiarism and failure to properly cite scientific literature and other sources will not be tolerated and are grounds for dismissal from the course and further GSBS disciplinary action. Cheating or engaging in unethical behavior during examinations (quizzes and exams) will be grounds for dismissal from the course without credit and further GSBS disciplinary action.

Grading System: Letter grade (A-F)

Student Assessment and Grading Criteria: (May include the following:)		
Percentage	Description	
Homework (35 %)	Homework, projects, and laboraroty	
Midterm Exam (33 %)	Ultrasound Exam	
Final Exam (32 %)		

Summer 2024 CLASS SCHEDULE - see attached

ULTRASOUND (1.5hr courses)

1	Ultrasound introduction: history of ultrasound, modern uses and	Bouchard	
	fundamentals of ultrasound physics		
2	Interactions with tissue I: derivation of the acoustic wave equation	Bouchard	
3	Interactions with tissue II: introduction to acoustic scattering and absorption	Bouchard	
4	Beamforming I: design and performance features of a modern ultrasound	Bouchard	
	array transducer		
5	Beamforming II: derivation of an array-based ultrasound diffraction pattern	Bouchard	
	and description of factors ultrasound resolution		
6	Ultrasound imaging I: technical workflow to generate a B-mode image on a	Bouchard	
	modern ultrasound system		
7	Ultrasound imaging II: ultrasound imaging features and modalities (e.g.,	Bouchard	
	Doppler imaging)		
8	Ultrasound imaging artifacts: explanation regarding the source and	Bouchard	
	appearance of common ultrasound imaging artifacts		
9	Ultrasound quality assurance & safety: methodology used to conduct QA plan	Bouchard	
	on a modern ultrasound system		
10	Advanced ultrasound: an in-depth introduction to two new ultrasound	Bouchard	
	imaging modalities, elasticity and photoacoustic imaging, with an emphasis on		
	the modality-specific physics and hardware		
	Exam 1 (mid-term): Ultrasound physics	Bouchard	
MR	MRI (1.5hr courses)		

11	Introduction to Magnetic Resonance	Stafford
12	Basic MR & Signal Generation Concepts	Stafford
13	Pulse Sequences I: Spin Echo	Stafford
14	Image Formation & Reconstruction I	Stafford
15	Signal, Contrast & Noise in MRI	Stafford
16	MR Instrumentation	Stafford
17	MR Artifacts & Principles of MR Quality Assurance	Stafford
18	Pulse Sequences II: Magnetization Preparation	Stafford
19	Pulse Sequences III: Fast Imaging & Clinical Applications	Stafford
20	Advanced MRI: Physiology & Function	Stafford
21	MR Safety for Medical Physicists	Stafford
	Exam 2 (final): MRI physics	Stafford

To be arranged:

Instructors: Drs. Walker, Taylor, Yung.

LAB 1: Introduction to Ultrasound

LAB 2: Basic Pulse Sequences & Contrast

LAB 3: ACR Phantom Analysis